Acid Base Equilibrium

Acid Base

- 1. What does the prefix hydro- tell us about an acid?
- 2. What does the suffix –ate tell us about an acid?
- 3. What does the suffix –ous tell us about an acid?
- 4. Define an Arrhenius acid and base.
- 5. Define a Brønsted Lowry acid and base.

- 6. What is a conjugate pair?
- 7. Define a Lewis acid and base.
- 8. What happens in the autoionizaion of water?
- 9. Mathematically show the [H⁺] in water at 25°C.
- 10. What determines the strength of an acid or base?

Problems:

- 1. What are the conjugate bases of these acids? If the chemical also has a conjugate acid, write that too. HNO₃, H₂O, H₃O⁺, H₂SO₄, HBr, HCO₃⁻.
- 2. What are the conjugate acids of these bases? If the chemical also has a conjugate base, write that too. OH, H₂O, HCO₃, SO₄², ClO₄
- 3. Find the $[H^+]$ and pH of water at 50°C if the $K_w = 5.476 \times 10^{-14}$.
- 4. Find the [OH] and pH of water at 0°C if the $K_w = 1.14 \times 10^{-13}$.

Acid Base Vodcast 2

- 1. What must always be produced in order to write a K_a expression?
- 2. What must always be produced in order to write a K_b expression?

Problems:

- 1. Calculate the pH of each of the following strong acid solutions: (a) 8.5 X 10⁻³ M HBr, (b) 1.52 g of HNO₃ in 575 mL of solution, (c) 5.00 mL of 0.250 M HC1O₄ diluted to 50.0 mL, (d) a solution formed by mixing 10.0 mL of 0.100 M HBr with 20.0 mL of 0.200 M HC1.
- 2. A 0.085 M solution of $C_6H_5CH_2COOH$ has a pH of 2.68. Calculate the K_a value for this acid.

Lactic acid (CH₃CH(OH)COOH) has one acidic hydrogen. A 0.10 M solution of lactic acid has a pH of 2.44. Calculate K_a .

- 3. A 0.100 M solution of chloroacetic acid (C1CH₂COOH) is 11.0% ionized. Using this information, calculate [C1CH₂COO], [1-11, IC1CH₂COOH)l, and K_a for chloroacetic acid
- 4. A particular sample of vinegar has a pH of 2.90. If acetic acid is the only acid that vinegar contains $(K_a = 1.8 \times 10^{-5})$, calculate the concentration of acetic acid in the vinegar.
- 5. Calculate the pH of each of the following solutions (K_a and K_b values are given in Appendix D): (a) 0.095 M propionic acid (C_2H_5COOH), (b) 0.100 M hydrogen chromate ion ($HCrO_4^{-1}$), (c) 0.120 M pyridine (C_5H_5N).
- 6. Calculate the percent ionization of hydrazoic acid (HN₃) in solutions of each of the following concentrations (K_a is given in Appendix D): (a) 0.400 M, (b) 0.100 M, (c) 0.0400 M.
- 7. Calculate the molar concentration of OH⁻ ions in a 0.075 M solution of ethylamine ($C_2H_5NH_2$; $Kb = 6.4 \times 10^{-4}$). Calculate the pH of this solution.
- 8. Calculate the molar concentration of OH ions in a 0.550 M solution of hypobromite ion (Br0; $K_b = 4.0 \times 10^{-6}$). What is the pH of this solution?
- 9. Ephedrine, a central nervous system stimulant, is used in nasal sprays as a decongestant. This compound is a weak organic base:

$$C_{10}H_{15}ON(aq) + H_2O \Leftrightarrow C_{10}H_{15}ONH^+(aq) + OH^-(aq)$$

A 0.035 M solution of ephedrine has a pH of 11.33. (a) What are the equilibrium concentrations of $C_{10}H_{15}ON$, $C_{10}H_{15}ONH^{+}$, and OH^{-} ? (b) Calculate K_b for ephedrine.